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Abstract. We define a metric in the space of quantum states taking the Monge distance between
corresponding Husimi distributions (Q-functions). This quantity fulfils the axioms of a metric
and satisfies the followingsemiclassical property: the distance between two coherent states is
equal to the Euclidean distance between corresponding points in the classical phase space. We
compute analytically distances between certain states (coherent, squeezed, Fock and thermal)
and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum
states.

1. Introduction

The state space of ann-dimensional quantum system is the set of alln × n positive
semidefinite complex matrices of trace 1 calleddensity matrices. The density matrices
of rank one (pure states) can be identified with nonzero vectors in a complex Hilbert space
of dimensionn. However, one has to take into account that the same state is described by
a vectorψ and λψ , whereλ 6= 0. Hence, pure states are in one-to-one correspondence
with rays{λψ : 0 6= λ ∈ C}. The rays form a smooth manifold called a complex projective
spaceCPn−1. In the infinite-dimensional case we have to consider density operators instead
of density matrices, and the space of pure states is the complex projective space over the
infinite-dimensional Hilbert space.

The problem of measuring a distance between two quantum states with a suitable
metric has attracted much attention in recent years. The Hilbert–Schmidt norm of an
operator‖A‖2 =

√
Tr(A†A) induces a natural distance between two density operators

dHS(ρ1, ρ2) =
√

Tr[(ρ1− ρ2)2]. This distance has recently been used to describe the
dynamics of the field in Jaynes–Cummings model [1] and to characterize the distance
between certain states used in quantum optics [2]. Another distance generated by thetrace
norm ‖A‖1 = Tr

√
A†A was used by Hillery [3, 4] to measure the nonclassical properties

of quantum states.
A concept of statistical distancewas introduced by Wootters [5] in the context of

measurements which optimally resolve neighbouring pure quantum states. This distance,
leading to the Fubini–Study metric in the complex projective space, was later generalized to
density matrices by Braunstein and Caves [6] and its dynamics for a two-state system
was studied by Braunstein and Milburn [7]. It was shown [6] that for neighbouring
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9096 K Życzkowski and W S lomczyński

density matrices the statistical distance is proportional to the distance introduced by
Bures in the late 1960s [8]. The latter was studied by Uhlmann [9] and Hübner [10],
who found an explicit formula for the Bures distance between two density operators
d2

B(ρ1, ρ2) = 2(1− tr[(ρ1/2
1 ρ2ρ

1/2
1 )1/2]). Note that various Riemannian metrics on the spaces

of quantum states were also considered by many other authors (see [11–15]).
In this paper we introduce yet another distance in the space of density operators, which

fulfils the following semiclassical property: the distance between two coherent states|α1〉
and|α2〉 localized at pointsa1 anda2 of the classical phase space� endowed with a metric
d is equal to the distance of these points

D(|α〉1〉, |α2〉) = d(a1, a2). (1.1)

This condition is quite natural in the semiclassical regime, where the quasiprobability
distribution of a quantum state tends to be strongly localized in the vicinity of the
corresponding classical point. A motivation to study such a distance stems from the search
for a quantum Lyapunov exponent, where a link between distances in Hilbert space and in
the classical phase space is required [16].

In order to find a metric satisfying condition (1.1) it is convenient to represent a quantum
stateρ in theQ-representation (also called the Husimi function) [17]

Hρ(α) := 〈α|ρ|α〉 (1.2)

defined with the help of a family of coherent states|α〉, α ∈ �, which fulfil the identity
resolutionI = ∫

�
|α〉〈α| dm(α), wherem is the natural measure on�. For a pure state

|ψ〉 one hasHψ(α) = |〈ψ |α〉|2. The choice of coherent states is somewhat arbitrary and
in fact one may work with different systems of coherent states [18]. In this paper we use
the classicalharmonic oscillator (field) coherent states, where� = C and dm(α) = d2α/π .
For convenience we shall use the renormalized version of the Husimi function putting
H(α) = 〈α|ρ|α〉/π and integrating over d2α. Note that the Husimi representation of a
given density operator determines it uniquely [19]. Since Husimi distributions are non-
negative and normalized, i.e.

∫
�
H(α) dm(α) = 1 andH > 0, it follows that a metric in

the space of probability densitiesQ : �→ R+ induces a metric in the state space.
In this work we propose to measure the distance between density operators by the Monge

distance between the corresponding Husimi distributions. The original Monge problem
consists of finding an optimal way of moving a pile of sand to a new location. The Monge
distance between two piles is given by the ‘path’ travelled by all grains under the optimal
transformation [20, 21].

This paper is organized as follows. In section 2 we give a definition of the Monge
metric, present an explicit solution for the one-dimensional (1D) case and discuss some
methods of tackling the two-dimensional (2D) problem. Section 3 contains some examples
of computing the Monge distance between certain states often encountered in quantum
optics. Concluding remarks are given in section 4. A variational approach to the Monge
problem is briefly presented in the appendix.

2. Monge metric

2.1. Monge transport problem

The original Monge problem, formulated in 1781 [22], emerged from studying the most
efficient way of transporting soil [20]:

Split two equally large volumes into infinitely small particles and then associate them with
each other so that the sum of products of these paths of the particles to the volume is least.
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Figure 1. Monge transport problem: how to move a pile of sandQ1(x1, x2) to a new location
Q2(x1, x2) minimizing the work done?

Along what paths must the particles be transported and what is the smallest transportation
cost?

Figure 1 represents a scheme for this problem. Here we give a general definition
of the Monge distance between two smooth probability densitiesQ1 andQ2 defined in
S = Rn. Let �1 and �2, determined byQi , describe the initial and final location of
‘sand’: �i = {(x, y) ∈ S × R+ : 0 6 y 6 Qi(x)}. Due to the normalization ofQi the
integral

∫
�i

dnx dy is equal to unity. Consider thatC1 mapsT : S → S which generate
volume-preserving transformations�1 into �2, i.e.

Q1(x) = Q2(T x)|T ′(x)| (2.1)

for all x ∈ S, whereT ′(x) denotes the Jacobian of the mapT at pointx. We shall look for
a transformation giving the minimal displacement integral and define the Monge distance
[20, 21]

DM(Q1,Q2) := inf
∫
S

|x − T (x)|Q1(x) dnx (2.2)

where the infimum is taken over allT as above. The optimal transformation (if it exists)
TM is called aMonge plan. Note that in this formulation of the problem the ‘vertical’
component of the sand movement is neglected.

It is easy to see that Monge distance fulfils all the axioms of a metric. This allows us to
define a ‘classical’ distance between two quantum statesρ1 andρ2 via the Monge distance
between the corresponding Husimi distributions:

Dcl(ρ1, ρ2) := DM(H1(α),H2(α)). (2.3)

The Monge distance satisfies the semiclassical property: it is shown below that the
distance between two coherent states, represented by Gaussian Husimi distributions localized
at pointsa1 anda2, equals to the classical distance|a1− a2|.

It is sometimes useful to generalize the notion of the Monge metric and to define a
family of distancesDMp

labelled by a continuous indexp (0 < p 6 ∞) in an analogous
way:

[DMp
(Q1,Q2)]

p := inf
∫
S

|x − T (x)|pQ1(x) dmx. (2.4)

For p = 1 one recovers the Monge distanceDM1 = DM , while the Fŕechet distanceDM2

is obtained forp = 2. A more general approach to the transport problem was proposed by
Kantorovitch [23] and further developed by Sudakov [24]. In contrast to the definition of
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Figure 2. The Monge distance between 1D functionsQ1(x) andQ2(x) may be represented as
the area between graphs of the corresponding distribution functionsF1(x) andF2(x)

Monge discussed in this work, the Kantorovitch distance betweenQ1 andQ2 is explicitly
symmetric with respect to exchange of both distributions. For a comprehensive review of
metrics in the space of probability measures and other generalizations of the Monge distance
see the monograph of Rachev [21].

2.2. Salvemini solution for the 1D problem

For S = R the Monge distance can be expressed explicitly with the help of distribution
functionsFi(x) =

∫ x
−∞Qi(t) dt, i = 1, 2. Salvemini [25] and Dall’Aglio [26] obtained the

following solution of the problem forp = 1.

DM(Q1,Q2) =
∫ +∞
−∞
|F1(x)− F2(x)| dx (2.5)

represented schematically in figure 2.
This result was generalized in the 1950s to allp > 1 by several authors (see [20, 21]).

We have

[DMp
(Q1,Q2)]

p =
∫ 1

0
|F−1

1 (t)− F−1
2 (t)|p dt. (2.6)

2.3. Poisson–Ampere–Monge equation for the 2D case

Consider smooth densitiesQ1,Q2 : R2 → R+. We are looking for a transformation
field w = (w1, w2) : R2 → R2 fulfilling w(x1, x2) = TM(x1, x2) − (x1, x2), whereTM
is an optimal Monge transformation minimizing the right-hand side of (2.4). Restricting
ourselves to smooth transformationsT we may apply the standard variational search for the
optimal fieldw. In the appendix it is shown that rot(w) = 0 if p = 2, and the potential
ϕ : w = grad(ϕ) satisfies the following partial differential equation

ϕx1x1 + ϕx2x2 + ϕx1x1ϕx2x2 − (ϕx1x2)
2 = Q1(x1, x2)

Q2(x1+ ϕx1, x2+ ϕx2)
− 1. (2.7)
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Solving thisLaplace–Ampere–Monge (LAM) equationfor the potentialϕ we get the Fŕechet
distanceDM2 from (2.4) computing the minimal displacement

(DM2(Q1,Q2))
2 =

∫ +∞
−∞

dx1

∫ +∞
−∞

dx2 (ϕ
2
x1
+ ϕ2

x2
)Q1(x1, x2). (2.8)

Although it is hardly possible to solve equation (2.7) in the general case, it might be used
to check whether a given transformation can be a solution of the Monge problem. Let us
remark that an optimal transformation fieldw (if it exists) need not be unique. Moreover,
(2.7) provides only a sufficient condition forw being optimal. It is important to note that the
2D Monge problem posed 200 years ago has not been solved in the general case [20, 21].

2.4. Estimation of the Monge distance via the transport problem

One of the major tasks of linear programming is the optimization of the following transport
problem. ConsiderN suppliers producingai(i = 1, . . . , N) pieces of a product per time
period andM customers requiringbj (j = 1, . . . ,M) pieces of the product at the same time.
Let (cij ) be aN×M cost matrix, representing for example the distances between sites. Find
the optimal transporting scheme, minimizing the total transport costsC =∑N

i=1

∑M
j=1 cij xij .

The non-negative elements of the unknown matrix(xij ) denote the number of products
moved from theith supplier to thej th customer. The optimization problem is subjected to
the following constraints:

∑M
j=1 xij = ai and

∑N
i=1 xij = bj . In the simplest case the total

supply equals the total demand and
∑N

i=1 ai =
∑M
j=1 bj .

The transport problemdescribed above gave, with a relatedassignment problem, an
impulse to develop methods of linear programming more than 50 years ago [23, 27]. Since
then several algorithms for solving the transport problem numerically have been proposed.
Some of them, as thenorthwest corner procedureand Vogel’s approximation[28], are
available in specialized software packages. It is worth adding that the transport methods are
widely used to solve a variety of problems in business and economy such as, for instance,
market distribution, production planning, plant location and scheduling problems.

It is easy to see that the transport problem is a discretized version of the Monge
problem defined for continuous distribution functions. One can, therefore, approximate
the Monge distance between two distributionsQ1(x) andQ2(x) (wherex stands for 2D
vector), by solving the transport problem for delta peaks approximation of the continuous
distributions:q1 =

∑N
i=1Q1(xi)δ(x − xi) andq2 =

∑M
j=1Q2(xj )δ(x − xj ). The quality of

this approximation depends on the numbersN andM of peaks representing the initial and
final distribution, respectively, and also on their location with respect to the shape of both
distributions. The numerical study performed with thenorthwest corneralgorithm for some
analytically soluble examples of the 2D Monge problem shows [29] that for reasonably
smooth distributions one obtains Monge distance with fair accuracy for a number of peaks
of the order of hundreds.

3. Monge distance between some states of quantum optics

In this section we compute Monge distances between certain quantum states. Even though
our considerations are valid in the general framework of quantum mechanics, for the sake of
concreteness we will use the language of quantum optics. Let us recall briefly the necessary
definitions and properties.

Let a and a† be the annihilation and creation operators satisfying the commutation
relation [a, a†] = 1. The ‘vacuum’ state |0〉 is distinguished by the relationa|0〉 = 0.
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Standard harmonic-oscillatorcoherent states|α〉 can be defined as the eigenstates of
the annihilation operatora|α〉 = α|α〉 or by the Glauber translation operatorD(α) =
exp(αa† − α∗a) as |α〉 = D(α)|0〉. Coherent states, determined by an arbitrary complex
numberα = x1+ ix2, enjoy a minimum uncertainty property. They are not orthogonal and
do overlap. The Husimi distribution of a coherent state|β〉 is Gaussian

Hβ(α) = 1

π
|〈β|α〉|2 = 1

π
exp(−|α − β|2). (3.1)

Squeezed states|γ, α〉 also minimize the uncertainty relation, however, the variances of
both canonically coupled variables are not equal. They are defined as

|γ, α〉 := D(α)S(γ )|0〉 (3.2)

where the squeezing operator isS(γ ) = exp[1
2(γ
∗a2 − γ a†2)]. The modulusg of the

complex numberγ = ge2iθ determines the strength of squeezing,s = eg − 1, while the
angleθ orients the squeezing axis. The Husimi distribution of a squeezed state|γ, β〉 is a
nonsymmetric Gaussian localized at pointβ and forθ = 0 reads

Hγ,β(x1, x2) = 1

π
exp[−(Re(β)− x1)

2/(s + 1)2− (Im (β)− x2)
2(s + 1)2]. (3.3)

Each pure state can be expressed in the Fock basis consisting ofn-photon states|n〉,
n = 0, 1, 2, . . . . Each coherent state can be expanded in the Fock basis as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (3.4)

The known scalar product〈α|n〉 allows one to write the Husimi function of aFock state

H|n〉(α) = 1

π

|α|2n
n!

e−|α|
2
. (3.5)

The vacuum state|0〉 can be thus regarded as the single Fock state being simultaneously
coherent.

In contrast to the above-mentioned pure states, thethermal mixture of states with the
mean number of photon equal ton̄ is represented by the density operator

ρn̄ =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉〈n|. (3.6)

Its Husimi distribution is the Gaussian centred at zero with the width depending on the
mean photon number,

Hρn̄(α) =
1

π(n̄+ 1)
exp

(
− |α|

2

n̄+ 1

)
. (3.7)

3.1. Two coherent states

Let us consider an arbitrary 2D distribution functionQ1(x1, x2) and a shifted one
Q2(x1, x2) = Q1(x1 − x∗1, x2 − x∗2). It is intuitive to expect that the simple translation
given by w(x1, x2) = constant = (x∗1, x

∗
2) solves the corresponding Monge problem.

Since for the respective potentialφ(x1, x2) = x∗1x1 + x∗2x2, the second derivatives vanish,
then both sides of the LAM equation (2.7) are equal to zero and the maximization condition
is fulfilled.
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It follows from this observation that for two coherent states defined on the complex
plane the Monge plan reduces to translation. The integration in (2.2) is trivial and provides
the Monge distance between two arbitrary coherent states|α〉 and |β〉

Dcl(|α〉, |β〉) = |α − β|. (3.8)

This is exactly thesemiclassical propertywe demanded from the metric in the state space.
The distance of the coherent state|α〉 from the vacuum state|0〉 is equal to|α|, which
is simply the square root of the mean number of photons in the state|α〉. The classical
property is fulfilled by the generalized Monge metricDMp

for any positive parameterp.

3.2. Coherent and squeezed states

We compute the distance between a coherent state|α〉 and the corresponding squeezed state
|γ, α〉. Due to the invariance of the Monge optimization with respect to translations, this
distance is equal to the distance between vacuum|0〉 and the squeezed vacuum|γ, 0〉. For
simplicity we will assume that squeezing is performed along thex1-axis, i.e. the complex
squeezing parameter is realγ = g ∈ R.

The corresponding Monge problem consists of finding the optimal transformation of the
symmetric GaussianQ1(x1, x2) = exp(−x2

1 − x2
2)/π into an asymmetric oneQ2(x1, x2) =

exp(−x2
1/(s + 1)2 − x2

2(s + 1)2/π . Considering contours of the Husimi distribution, often
used to represent a state in quantum optics, a circle has to be transformed into an ellipse.
If p = 2 then the following affine transformationT (x1, x2) = (x1/(s + 1), x2(s + 1))
corresponds to the irrotational transport fieldw(x1, x2) = (−sx1/(s + 1), sx2). It can be
obtained as the gradient of the potentialϕ(x1, x2) = −sx2

1/(2s+2)+ sx2
2/2, for which both

sides of the LAM equation (2.7) vanish. Hence, fieldw provides a Monge plan for this
problem and the Fréchet distanceDM2 is given by

[DM2(|0〉, |g, 0〉)]2 = s2

π

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 exp(−x2
1 − x2

2)(x
2
1/(s + 1)2+ x2

2)

= s2

2

(
1+ 1

(s + 1)2

)
. (3.9)

3.3. Vacuum and thermal states

Since Husimi distributions of both states is rotationally invariant, it is convenient to use
radial components of the distributionRi(r) = 2πrHi(r, φ). One may then reduce the
problem to one dimension and find the Monge distance via radial distribution functions
Fi(r) =

∫ r
0 Ri(r

′) dr ′. Taking Husimi distributions (3.1) and (3.7) we get the corresponding
distribution functionsF1(r) = 1− exp(−r2) andF2(r) = 1− exp(−r2/(n̄+ 1)). Using the
Salvemini formula (2.5) we obtain

Dcl(|0〉〈0|, ρn̄) =
∫ ∞

0
|F1(r)− F2(r)| dr =

√
π

2
(
√
n̄+ 1− 1). (3.10)

Applying formula (2.6) we get a formula for the generalized Monge distance between two
thermal states

DMp
(ρn̄1, ρn̄2) =

(
0
(

1+ p
2

))1/p√
n̄1+ 1−

√
n̄2+ 1|. (3.11)

This agrees with an observation thatp1 < p2 impliesDMp1 6 DMp2 [21].
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3.4. Two Fock states

As in the previous example, the rotational symmetry of the Fock states allows us to use
the 1D formula. Integrating (3.5) for a Fock state|n〉 we can express the radial distribution
function in terms of the incomplete Gamma function0(x, r) as

Fn(r) = 1− 0(n+ 1, r2)

0(n+ 1)
. (3.12)

Since for different Fock states the distribution functions do not cross, applying Salvemini
formula (2.5) we obtain the Monge distance

Dcl(|m〉, |n〉) =
∣∣∣∣ ∫ ∞

0
Fn(r) dr −

∫ ∞
0
Fm(r) dr

∣∣∣∣ = √π |Cm − Cn| (3.13)

whereC0 = 1
2;Ck+1− Ck =

(2k+1
k

)
1

4k+1 ∼ 1
2
√
πk

for k = 0, 1, 2 . . . .

4. Discussion

We have presented a definition of distance between quantum states (i.e. elements of a
Hilbert space) which possesses a certain classical property, natural for investigation of the
semiclassical limit of quantum mechanics. The Monge distance between the corresponding
Husimi functions fulfils the axioms of a metric and induces a ‘classical’ topology in the
Hilbert space. It is worth emphasizing that the Monge distance between two given density
matrices depends on the topology of the corresponding classical phase space.

Consider a quantum state prepared as a superposition of two coherent states separated in
the phase space byx. It is known [30–32] that such a state interacting with an environment
evolves quickly towards a mixture of the two localized states. The decoherence time
decreases with the classical distancex, just equal to the Monge distance between both
coherent states. We expect therefore that the Monge distance between two arbitrary quantum
states might be useful to determine the rate with which the superposition of these two states
suffers the decoherence.

It is possible to generalize our approach in several directions. Instead of the standard
Husimi distributions used throughout this paper, one may study Monge distances between
generalized Husimi distributions̃Hρ(α) = 〈α̃|ρ|α̃〉, where |α̃〉 are generalized coherent
states [33]. For example, one may use for this purpose squeezed states [34], or the spin
coherent states [35, 36], if the classical space is the 2D sphere.

Moreover, our considerations based on the Husimi representation of quantum states,
may be in fact extended to the Wigner function. Despite the fact that the Wigner function
can take on negative values, it is normalized and the Monge problem of finding an optimal
way to transport one Wigner function into another might also be considered. The concept
of the classical distance between two Husimi (Wigner) functions is not only of theoretical
interest, since novel methods of measuring Husimi and Wigner distributions have recently
been developed [37–39].
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Appendix. Variational approach to Monge problem

1D case

LetQ1 andQ2 be smooth densities. In the 1D case there is only one mapT fulfilling (2.1).
It can be described with the aid of distribution functions asT (x) = F−1

2 (F1(x)), where
Fi(x) =

∫ x
−∞Qi(t) dt for x ∈ R. This allows us to express the generalized Monge distance

as an integral (2.4)

[DMp
(Q1,Q2)]

p :=
∫ ∞
−∞

Q1(x)|F−1
2 [F1(x)] − x|p dx. (A.1)

In the simplest casep = 1 (A1) reduces to the Salvemini formula (2.5) and forp > 1 to
formula (2.6).

2D case

Consider two smooth densitiesQ1(x1, x2) and Q2(x1, x2). We are looking for a map
T (x1, x2) = (x1 + w1(x1, x2), x2 + w2(x1, x2)) transformingQ1 into Q2 (i.e. such that
(2.1) is fulfilled) and minimizing the quantity

Ip =
∫ +∞
−∞

Q1(x1, x2)|w2
1(x1, x2)+ w2

2(x1, x2)|p/2 dx1 dx2. (A.2)

The indexp, labelling the generalized distance, is equal to one for the Monge metric and to
two for the Fŕechet metric. Introducing a Lagrange factorλ we write the Lagrange function
in the form

Lp = Q1(w
2
1 + w2

2)
p/2+ λ(Q1−Q2(T ))[(1+ w1x1)(1+ w2x2)− w1x2w2x1]. (A.3)

The Lagrange–Euler equations for variations ofLp allow us to obtain the partial derivatives
of λ

λx1 = 2pCp(w1(1+ w1x1)+ w2w2x1)

λx2 = 2pCp(w2(1+ w2x2)+ w1w1x2)
(A.4)

whereCp = (w2
1 + w2

2)
(p−2)/2. Using the equalityλx1x2 = λx2x1 we get

w1x2(w
2
1(p − 1)+ w2

2)− w2x1(w
2
2(p − 1)+ w2

1)+ (p − 2)(w2x2 − w1x1)w1w2 = 0. (A.5)

If p = 2 we deduce from (A5) thatw1x2 = w2x1, i.e. rot(w) = 0. Taking the potential
ϕ : w = grad(ϕ) we see thatϕ fulfils (2.7) and formula (2.8) holds.
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