IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The Monge distance between quantum states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 9095
(http://iopscience.iop.org/0305-4470/31/45/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:19

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 9095-9104. Printed in the UK PIl: S0305-4470(98)93137-7

The Monge distance between quantum states
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Abstract. We define a metric in the space of quantum states taking the Monge distance between
corresponding Husimi distributiong)¢functions). This quantity fulfils the axioms of a metric

and satisfies the followingemiclassical propertythe distance between two coherent states is
equal to the Euclidean distance between corresponding points in the classical phase space. We
compute analytically distances between certain states (coherent, squeezed, Fock and thermal)
and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum
states.

1. Introduction

The state space of am-dimensional quantum system is the set of iallk n positive
semidefinite complex matrices of trace 1 calléensity matrices The density matrices

of rank one fpure statescan be identified with nonzero vectors in a complex Hilbert space

of dimensionn. However, one has to take into account that the same state is described by
a vectory and Ay, wherei # 0. Hence, pure states are in one-to-one correspondence
with rays{ry : 0 # A € C}. The rays form a smooth manifold called a complex projective
spaceCP"1. In the infinite-dimensional case we have to consider density operators instead
of density matrices, and the space of pure states is the complex projective space over the
infinite-dimensional Hilbert space.

The problem of measuring a distance between two quantum states with a suitable
metric has attracted much attention in recent years. The Hilbert—-Schmidt norm of an
operator ||All, = /Tr(ATA) induces a natural distance between two density operators
dus(p1, p2) = +/Tr[(p1 — p2)?]. This distance has recently been used to describe the
dynamics of the field in Jaynes—Cummings model [1] and to characterize the distance
between certain states used in quantum optics [2]. Another distance generatedragehe
norm ||Ally = Trv/ AtA was used by Hillery [3, 4] to measure the nonclassical properties
of quantum states.

A concept of statistical distancewas introduced by Wootters [5] in the context of
measurements which optimally resolve neighbouring pure quantum states. This distance,
leading to the Fubini—Study metric in the complex projective space, was later generalized to
density matrices by Braunstein and Caves [6] and its dynamics for a two-state system
was studied by Braunstein and Milburn [7]. It was shown [6] that for neighbouring
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density matrices the statistical distance is proportional to the distance introduced by
Bures in the late 1960s [8]. The latter was studied by Uhimann [9] aiidnir [10],
who found an explicit formula for the Bures distance between two density operators
dé(pl, p2) = 2(1—tr[(pll/ngpi/z)l/z]). Note that various Riemannian metrics on the spaces
of quantum states were also considered by many other authors (see [11-15]).

In this paper we introduce yet another distance in the space of density operators, which
fulfils the following semiclassical propertythe distance between two coherent staig$
and|a») localized at pointg;; anda, of the classical phase spa@eendowed with a metric

d is equal to the distance of these points
D(la)1), lee2)) = d(ax, az). (1.1)

This condition is quite natural in the semiclassical regime, where the quasiprobability
distribution of a quantum state tends to be strongly localized in the vicinity of the
corresponding classical point. A motivation to study such a distance stems from the search
for a quantum Lyapunov exponent, where a link between distances in Hilbert space and in
the classical phase space is required [16].

In order to find a metric satisfying condition (1.1) it is convenient to represent a quantum
statep in the Q-representation (also called the Husimi function) [17]

Hy(a) i= (a|ple) (1.2)

defined with the help of a family of coherent state$, « € 2, which fulfil the identity
resolutionI = [, |&) (| dm(cr), wherem is the natural measure a2. For a pure state

|) one hasH, (a) = |(¥|a)|?. The choice of coherent states is somewhat arbitrary and
in fact one may work with different systems of coherent states [18]. In this paper we use
the classicaharmonic oscillator (field) coherent stateshereQ = C and dn(a) = d?a/7.

For convenience we shall use the renormalized version of the Husimi function putting
H(a) = (a|pla)/m and integrating over 4. Note that the Husimi representation of a
given density operator determines it uniquely [19]. Since Husimi distributions are non-
negative and normalized, i.ng H(x)dm(x) =1 andH > 0, it follows that a metric in

the space of probability densitig® : @ — R, induces a metric in the state space.

In this work we propose to measure the distance between density operators by the Monge
distance between the corresponding Husimi distributions. The original Monge problem
consists of finding an optimal way of moving a pile of sand to a new location. The Monge
distance between two piles is given by the ‘path’ travelled by all grains under the optimal
transformation [20, 21].

This paper is organized as follows. In section 2 we give a definition of the Monge
metric, present an explicit solution for the one-dimensional (1D) case and discuss some
methods of tackling the two-dimensional (2D) problem. Section 3 contains some examples
of computing the Monge distance between certain states often encountered in quantum
optics. Concluding remarks are given in section 4. A variational approach to the Monge
problem is briefly presented in the appendix.

2. Monge metric

2.1. Monge transport problem

The original Monge problem, formulated in 1781 [22], emerged from studying the most
efficient way of transporting soil [20]:

Split two equally large volumes into infinitely small particles and then associate them with
each other so that the sum of products of these paths of the particles to the volume is least.
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Figure 1. Monge transport problem: how to move a pile of sapg(x1, x2) to a new location
Q2(x1, x2) minimizing the work done?

Along what paths must the particles be transported and what is the smallest transportation
cosfP

Figure 1 represents a scheme for this problem. Here we give a general definition
of the Monge distance between two smooth probability densifiesand Q, defined in
S = R". Let Q; and Q,, determined byQ;, describe the initial and final location of
‘sand; ©; = {(x,y) € Sx RT : 0 < y < Q;(x)}. Due to the normalization of; the
integral fQ/_ d'x dy is equal to unity. Consider that® maps7T : S — S which generate
volume-preserving transformatio; into 25, i.e.

01(x) = Qo(Tx)|T"(x)] (2.1)

for all x € S, whereT'(x) denotes the Jacobian of the mAmat pointx. We shall look for
a transformation giving the minimal displacement integral and define the Monge distance
[20, 21]

Dy (Q1, Q2) = inf/ Ix = T(x)|Q1(x) d"x (2.2)
N

where the infimum is taken over dll as above. The optimal transformation (if it exists)
Ty, is called aMonge plan Note that in this formulation of the problem the ‘vertical’
component of the sand movement is neglected.

It is easy to see that Monge distance fulfils all the axioms of a metric. This allows us to
define a ‘classical’ distance between two quantum statemnd p, via the Monge distance
between the corresponding Husimi distributions:

D (p1, p2) := Dy (Hi(a), Ha()). (2.3)

The Monge distance satisfies the semiclassical property: it is shown below that the
distance between two coherent states, represented by Gaussian Husimi distributions localized
at pointsa; anday, equals to the classical distangg — ax|.

It is sometimes useful to generalize the notion of the Monge metric and to define a
family of distancesD,,, labelled by a continuous index (0 < p < o0) in an analogous
way:

[Dy, (Q1. 07 i= inf /S ¥ = TGP Q1) d'x. (2.4)

For p = 1 one recovers the Monge distanbg;, = Dy, while the Féchet distanceD,,,
is obtained forp = 2. A more general approach to the transport problem was proposed by
Kantorovitch [23] and further developed by Sudakov [24]. In contrast to the definition of
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Figure 2. The Monge distance between 1D functiofs(x) and Q2(x) may be represented as
the area between graphs of the corresponding distribution funclpn9 and Fo(x)

Monge discussed in this work, the Kantorovitch distance betwgemand Q, is explicitly
symmetric with respect to exchange of both distributions. For a comprehensive review of
metrics in the space of probability measures and other generalizations of the Monge distance
see the monograph of Rachev [21].

2.2. Salvemini solution for the 1D problem

For S = R the Monge distance can be expressed explicitly with the help of distribution
functions F; (x) = f_xoo Q:(t)dt,i =1, 2. Salvemini [25] and Dall’Aglio [26] obtained the
following solution of the problem fop = 1.

+00

Dy (Q1, Q2) = / |F1(x) — Fa(x)| dx (2.5)

—0o0
represented schematically in figure 2.
This result was generalized in the 1950s tosall: 1 by several authors (see [20, 21]).
We have

1
[Dy, (O1. 027 = /0 \FN) — F )P dr. (2.6)

2.3. Poisson—Ampere—Monge equation for the 2D case

Consider smooth densitie§:, 0> : R? — R*. We are looking for a transformation
field w = (w1, wp) : R? — R? fulfilling w(x1, x2) = Ty (x1, x2) — (x1, x2), where Ty,

is an optimal Monge transformation minimizing the right-hand side of (2.4). Restricting
ourselves to smooth transformatiofisve may apply the standard variational search for the
optimal field w. In the appendix it is shown that Ket) = 0 if p = 2, and the potential

¢ . w = grade) satisfies the following partial differential equation

Q1(x1, x2)

—1 @27
02(x1 + @y, X2+ @y,)

Px1x1 + Pxoxs + Px1x1Pxoxs — ((pxlxz)z =
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Solving thisLaplace—Ampere—Monge (LAM) equatifor the potentialy we get the Rechet
distanceD,,, from (2.4) computing the minimal displacement
+oo +oo

(D, (Q1, 02))? = dg drz (92, + ¢2) Q1(x1, x2). (2.8)

—0oQ0 —0oQ0
Although it is hardly possible to solve equation (2.7) in the general case, it might be used
to check whether a given transformation can be a solution of the Monge problem. Let us
remark that an optimal transformation field (if it exists) need not be unique. Moreover,
(2.7) provides only a sufficient condition far being optimal. It is important to note that the
2D Monge problem posed 200 years ago has not been solved in the general case [20, 21].

2.4. Estimation of the Monge distance via the transport problem

One of the major tasks of linear programming is the optimization of the following transport
problem. ConsideV suppliers producing; (i = 1, ..., N) pieces of a product per time
period andM customers requiring; (j = 1, ..., M) pieces of the product at the same time.
Let (¢;;) be aN x M cost matrix, representing for example the distances between sites. Find
the optimal transporting scheme, minimizing the total transport @@stsy " Zjle CijXij-

The non-negative elements of the unknown mathy) denote the number of products
moved from theth supplier to thejth customer. The optimization problem is subjected to

the following constraints:Zj‘il x;j =a; andY_" . x;; = b;. In the simplest case the total

supply equals the total demand apgf’ ; a; = Y"1, b;.

The transport problemdescribed above gave, with a relatagisignment probleman
impulse to develop methods of linear programming more than 50 years ago [23, 27]. Since
then several algorithms for solving the transport problem numerically have been proposed.
Some of them, as theorthwest corner procedurand Vogel's approximation28], are
available in specialized software packages. It is worth adding that the transport methods are
widely used to solve a variety of problems in business and economy such as, for instance,
market distribution, production planning, plant location and scheduling problems.

It is easy to see that the transport problem is a discretized version of the Monge
problem defined for continuous distribution functions. One can, therefore, approximate
the Monge distance between two distributiofs(x) and Q.(x) (wherex stands for 2D
vector), by solving the transport problem for delta peaks approximation of the continuous
distributions: g1 = Y, Q1(x;)8(x — x;) andgz = Y13 Qa(x;)8(x — x;). The quality of
this approximation depends on the numb&rend M of peaks representing the initial and
final distribution, respectively, and also on their location with respect to the shape of both
distributions. The numerical study performed with ti@thwest corneralgorithm for some
analytically soluble examples of the 2D Monge problem shows [29] that for reasonably
smooth distributions one obtains Monge distance with fair accuracy for a number of peaks
of the order of hundreds.

3. Monge distance between some states of quantum optics

In this section we compute Monge distances between certain quantum states. Even though
our considerations are valid in the general framework of quantum mechanics, for the sake of
concreteness we will use the language of quantum optics. Let us recall briefly the necessary
definitions and properties.

Let « and a' be the annihilation and creation operators satisfying the commutation
relation z,a'] = 1. The vacuum state |0) is distinguished by the relation|0) = O.
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Standard harmonic-oscillatozoherent statesla) can be defined as the eigenstates of
the annihilation operatou|a) = «a|a) or by the Glauber translation operatdr(e) =
explaa’ — a*a) as|a) = D(«)|0). Coherent states, determined by an arbitrary complex
numbera = x1 + ix2, €njoy a minimum uncertainty property. They are not orthogonal and
do overlap. The Husimi distribution of a coherent stgtg is Gaussian

1 1
Hg(a) = ;I(ﬁIOé)I2 = —exp(—o - BI2). 3.1

Squeezed stately, o) also minimize the uncertainty relation, however, the variances of
both canonically coupled variables are not equal. They are defined as

ly, &) := D()S(y)|0) (3.2

where the squeezing operator §$y) = exp[3(y*a®? — ya'®)]. The modulusg of the
complex number = ge?? determines the strength of squeezing= e — 1, while the
angled orients the squeezing axis. The Husimi distribution of a squeezed|gtaté is a
nonsymmetric Gaussian localized at pofhtind foré = 0 reads

1
Hy p(x1, %2) = — expl=(Re(B) — x)%/(s + D = (IM () — x2)*(s + 1)°]. (3.3)
Each pure state can be expressed in the Fock basis consistingtafton statesn),
n=0,1 2, .... Each coherent state can be expanded in the Fock basis as
o) = e/ i “_”m). (3.4)
n=0 \/m
The known scalar produgtr|n) allows one to write the Husimi function of Bock state
1 2n
Hppy (o) = _&e—lalz. (3.5)
7w n!

The vacuum statg0) can be thus regarded as the single Fock state being simultaneously
coherent.

In contrast to the above-mentioned pure statesthbemal mixture of states with the
mean number of photon equal #ois represented by the density operator

00 n
Pi = ; WW("L (3.6)

Its Husimi distribution is the Gaussian centred at zero with the width depending on the
mean photon number,

B 1 la|?
I'Ipﬁ (Ol) = m eXp(—ﬁ n 1) . (37)

3.1. Two coherent states

Let us consider an arbitrary 2D distribution functiof;(x1, x,) and a shifted one
Q2(x1, x2) = Q1(x1 — x7,x2 — x3). It is intuitive to expect that the simple translation
given by w(xy, x2) = constant = (x], x5) solves the corresponding Monge problem.
Since for the respective potenti@lx1, xo) = xfx1 + x3x2, the second derivatives vanish,
then both sides of the LAM equation (2.7) are equal to zero and the maximization condition
is fulfilled.
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It follows from this observation that for two coherent states defined on the complex
plane the Monge plan reduces to translation. The integration in (2.2) is trivial and provides
the Monge distance between two arbitrary coherent stafeand |8)

De(la), |B)) = le — BI. (3-8)

This is exactly thesemiclassical propertyve demanded from the metric in the state space.
The distance of the coherent stdte from the vacuum stat¢0) is equal to|«|, which

is simply the square root of the mean number of photons in the gtateThe classical
property is fulfilled by the generalized Monge metfig,, for any positive parametey.

3.2. Coherent and squeezed states

We compute the distance between a coherent gtatand the corresponding squeezed state
ly, a). Due to the invariance of the Monge optimization with respect to translations, this
distance is equal to the distance between vaci@nand the squeezed vacuum, 0). For
simplicity we will assume that squeezing is performed alongxfiaxis, i.e. the complex
squeezing parameter is real= g € R.

The corresponding Monge problem consists of finding the optimal transformation of the
symmetric Gaussia®i (x1, x2) = exp(—x? — x3) /7 into an asymmetric on@z(x1, x2) =
exp(—x2/(s + 1)2 — x3(s + 1)2/=. Considering contours of the Husimi distribution, often
used to represent a state in quantum optics, a circle has to be transformed into an ellipse.
If p = 2 then the following affine transformatiofi(x1, x2) = (x1/(s + 1), x2(s + 1))
corresponds to the irrotational transport fieldx, x,) = (—sx1/(s + 1), sx2). It can be
obtained as the gradient of the potentigk;, x2) = —sx2/(2s +2) +sx3/2, for which both
sides of the LAM equation (2.7) vanish. Hence, fieldprovides a Monge plan for this
problem and the Fchet distance,,, is given by

2 fe'] 0
[DM2(|0>,|g,0>>]2=s; / dx; / drp exp(—xZ — x2)(x2/(s + D2 + x2)

52 1
- (1+ o 1>2> . (3.9)

3.3. Vacuum and thermal states

Since Husimi distributions of both states is rotationally invariant, it is convenient to use
radial components of the distributioR;(r) = 27xrH;(r, ). One may then reduce the
problem to one dimension and find the Monge distance via radial distribution functions
Fi(r) = [y R;i(r')dr’. Taking Husimi distributions (3.1) and (3.7) we get the corresponding
distribution functionsFyi(r) = 1 — exp(—r?) and Fo(r) = 1 — exp(—r?/(i + 1)). Using the
Salvemini formula (2.5) we obtain

D (10)(01, pa) = /O |F1(r) — F2(r)| dr = %ﬁ(vﬁ +1-1). (3.10)

Applying formula (2.6) we get a formula for the generalized Monge distance between two
thermal states

Dy, (P Piy) = (r (1+ g))l/p Vit 1— i+ 1. (3.11)

This agrees with an observation that < p, implies Dy, < Dy, [21].
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3.4. Two Fock states

As in the previous example, the rotational symmetry of the Fock states allows us to use
the 1D formula. Integrating (3.5) for a Fock stat@ we can express the radial distribution
function in terms of the incomplete Gamma functibrx, r) as
C'(n+1,r3
F,r)=1— —=. 3.12
") Fo D (312)

Since for different Fock states the distribution functions do not cross, applying Salvemini
formula (2.5) we obtain the Monge distance

/‘00 F,(r)dr — [00 F, (r)dr
0 0

2k+1\ 1 1
k )m’\’mforkzo,l,z

D (|m), |n)) = = \/;|Cm — Gyl (313)

whereCo = 3; Cry1 — Cr = (

4. Discussion

We have presented a definition of distance between quantum states (i.e. elements of a
Hilbert space) which possesses a certain classical property, natural for investigation of the
semiclassical limit of quantum mechanics. The Monge distance between the corresponding
Husimi functions fulfils the axioms of a metric and induces a ‘classical’ topology in the
Hilbert space. It is worth emphasizing that the Monge distance between two given density
matrices depends on the topology of the corresponding classical phase space.

Consider a quantum state prepared as a superposition of two coherent states separated in
the phase space hy It is known [30-32] that such a state interacting with an environment
evolves quickly towards a mixture of the two localized states. The decoherence time
decreases with the classical distancejust equal to the Monge distance between both
coherent states. We expect therefore that the Monge distance between two arbitrary quantum
states might be useful to determine the rate with which the superposition of these two states
suffers the decoherence.

It is possible to generalize our approach in several directions. Instead of the standard
Husimi distributions used throughout this paper, one may study Monge distances between
generalized Husimi distributionﬁp(a) = (a|pla), where|a) are generalized coherent
states [33]. For example, one may use for this purpose squeezed states [34], or the spin
coherent states [35, 36], if the classical space is the 2D sphere.

Moreover, our considerations based on the Husimi representation of quantum states,
may be in fact extended to the Wigner function. Despite the fact that the Wigner function
can take on negative values, it is normalized and the Monge problem of finding an optimal
way to transport one Wigner function into another might also be considered. The concept
of the classical distance between two Husimi (Wigner) functions is not only of theoretical
interest, since novel methods of measuring Husimi and Wigner distributions have recently
been developed [37-39].
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Appendix. Variational approach to Monge problem

1D case

Let Q; and O, be smooth densities. In the 1D case there is only one Thaffilling (2.1).

It can be described with the aid of distribution functions7Tas) = Fz_l(Fl(x)), where
Fi(x) = ffoo Q;(t)dr for x € R. This allows us to express the generalized Monge distance
as an integral (2.4)

[Dy, (Q1. 0217 = / 01001 F; {F1(0)] — x/? dh. (A1)

In the simplest cas@ = 1 (Al) reduces to the Salvemini formula (2.5) and jor= 1 to
formula (2.6).

2D case

Consider two smooth densitie@1(x1, x2) and Q,(x1, x2). We are looking for a map
T(x1,x2) = (x1 + wi(xy, x2), x2 + wa(xy, x2)) transforming Q; into Q, (i.e. such that
(2.1) is fulfilled) and minimizing the quantity
“+o00
I,= Q1(x1, x2) [wf(x1, x2) + wi(x1, x2)|”/2 dxy ez, (A2)
—00
The indexp, labelling the generalized distance, is equal to one for the Monge metric and to
two for the FEchet metric. Introducing a Lagrange factowe write the Lagrange function
in the form

L, = Q1(w? + wd)P? + 1(01 — Q2TH(L + wiy,) (L + wag,) — Wiy, Way]. (A.3)

The Lagrange—Euler equations for variationd gfallow us to obtain the partial derivatives
of A

Ay = 2pCp(w1(1+ wiy,) + waway,)

(A.4)
A, = 2pCp(wa(1+ way,) + wiwiy,)

whereC, = (w2 + w3)?=2/2, Using the equalityt,,,, = A, We get
w1, WE(p — 1) + w5) — wa, (wi(p — 1) + wh) + (p — 2)(war, — wig)wawz = 0. (A5)

If p =2 we deduce from (A5) thai1,, = wy,,, i.e. ro{w) = 0. Taking the potential
¢ . w = grady) we see thap fulfils (2.7) and formula (2.8) holds.
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